Note: Particle Physics Seminar

Yilin YE
Updated on March 31, 2021

Abstract
Here is the brief summary of Particle physics seminar taught by Prof. Lingyun DAI. Enjoy the study!

Contents

1 SU(N) group 1
1.1 Young tableau \& applications 1
$2 \quad \mathrm{SU}(3)$ 3
2.1 Mesons \& Baryons 5
3 QED 6
4 Weak interaction 7
4.1 V-A theory 8

$1 \quad \mathrm{SU}(\mathrm{N})$ group

For $\operatorname{SU}(\mathrm{N})$ group, it's suppose that $U U^{\dagger}=\mathbf{1}$ and $\operatorname{det} U=\mathbf{1}$. For each component $a_{i j}$ of the $U=\left(a_{i j}\right), a_{i j}=b_{i j}+i c_{i j}$, so it seems that there were $2 n^{2}$ independent elements.

$$
\sum_{k=1}^{N} a_{i k} \cdot a_{k j}^{\dagger}=\sum_{k=1}^{N}\left(b_{i k}+i c_{i k}\right)\left(b_{j k}-i c_{j k}\right)=\sum_{k=1}^{N}\left(b_{i k} b_{j k}+c_{i k} c_{j k}+i c_{i k} b_{j k}-i b_{i k} c_{j k}\right)=\delta_{i j}
$$

Extract the real part and the imaginary part,

$$
\left\{\begin{array}{l}
\sum_{k}\left(b_{i k} b_{j k}+c_{i k} c_{j k}\right)=1 \tag{a}\\
\sum_{k}\left(c_{i k} b_{j k}-b_{i k} c_{j k}\right)=0
\end{array}\right.
$$

with two variables i and j varying from 1 to n. However, we find eqs from $i<j$ one-to-one equal to them of $i>j$, because of commutative multiplication. Thus we obtain $1+2+\cdots+n-1=$ $n(n-1) / 2$ equations for both eq. (a) and eq. (b). If $i=j$, eq. (b) would always satisfy, but there are n independent eqs. from (a). Don't forget $\operatorname{det} U=1$. Therefore, there are

$$
2 n^{2}-\frac{n(n-1)}{2} \cdot 2-n-1=n^{2}-1
$$

independent elements in total, and 8 independent elements for $\mathrm{SU}(3)$ group.

Proposition 1. $u=\exp \left(i T_{i} \theta^{i}\right)$ is Hermitian.

$$
u u^{\dagger}=\exp \left(i T_{i} \theta^{i}\right) \exp \left(-i T_{i}^{\dagger} \theta\right)=\exp \left[i\left(T_{i}-T_{i}^{\dagger}\right) \theta^{i}\right]=\mathbf{1} \quad \Rightarrow \quad T_{i}=T_{i}^{\dagger}
$$

Proposition 2. T_{i} is traceless. (u is unitary matrix, so and $\operatorname{det} u=|u|=1$)
Since the similar transformation would not change the trace of matrices, and as a Hermitian matrix, u has n independent eigenvectors, because

$$
\ln |u|=\operatorname{tr}(\ln u)=\operatorname{tr}\left[\ln \exp \left(i T_{i} \theta^{i}\right)\right]=\operatorname{tr}\left(i T_{i} \theta^{i}\right)=0
$$

Question What is fundamental representation? - Defined in terms of matrices.

1.1 Young tableau \& applications

Here is the simplest Young tableau, we say its order equal to n.

Define Hook length of each block $=$ the number of blocks under it + right of it +1 (itself). Below is another Young tableau, with $(n-1)$ row but only 1 column.

n
$n-1$
\cdots
2

In general, the order of each Young tableau is the product of each component divided by all Hook lengths. Therefore, the order of the diagram above is equal to $\frac{n(n-1) \cdots 2}{(n-1)(n-2) \cdots 1}=n$.

3	4	5
2	3	
1		

The order of this Young tableau is equal to : $\frac{3 \times 4 \times 5 \times 2 \times 3 \times 1}{5 \times 3 \times 1 \times 3 \times 1 \times 1}=8$

Note that apart from the last integer under the block, we should write next integer on the right of each block. Consider the direct product of two $\mathrm{SU}(3)$ group, we could describe it by fusing related Young tableaux.

$$
\square \quad \begin{array}{|}
\square & \mathrm{a} \\
. \quad \mathrm{a} \\
\hline \mathrm{a} \\
\hline
\end{array}
$$

We can easily write all orders above, if we write 3 in the blank block

$$
3 \otimes 3=6 \oplus 3
$$

Consider the direct product of three $\mathrm{SU}(3)$ group:

$$
\square \otimes \begin{array}{|}
\square \\
\mathrm{a} \\
\mathrm{~b} \\
\square \mathrm{a} & \mathrm{~b}
\end{array} \begin{array}{|l|l|l|l|}
\hline & \mathrm{a} \\
\hline \mathrm{~b} & \mathrm{~b} \\
\hline \mathrm{a} \\
\hline \mathrm{a} \\
\hline \mathrm{~b} \\
\hline
\end{array}
$$

We can also write all orders above if we write 3 in the blank block:

$$
3 \otimes 3=10 \oplus 8 \oplus 8 \oplus 1
$$

which means the baryons decuplet, octet, octet, singlet.
Note, there are some rules for more complex direct products:

- focus on the right Young tableau;
- fill a in all first row, b the second, c the third ...
- add a blocks to the left Young tableau;
- don't put two a in the same column;
- after adding all a then add b blocks;
- from up to bottom, from right to left, the accumulated number of $b \leq$ that of a;
- of course, the column number should not increase from up to bottom;

Finally, let us try the direct product of two octet as an example, namely the equation below

$8 \otimes 8=27 \oplus 10 \oplus 10 \oplus 8 \oplus 8 \oplus 1$

$2 \mathrm{SU}(3)$

Suppose that u is a 3×3 matrix, with its determinant:

$$
u_{i}^{1} u_{j}^{2} u_{k}^{3} \epsilon^{i j k}=\operatorname{det}|u|
$$

introduce Levi-Civita symbol

$$
\epsilon^{a b c}=u_{i}^{a} u_{j}^{b} u_{k}^{c} \epsilon^{i j k}=\epsilon^{a b c} \cdot \operatorname{det}|u|
$$

So $\epsilon^{a b c}$ is irreducible representation.
For irreducible (n, m) tensor,

$$
T_{j_{1} j_{2} \cdots}^{i_{1} i_{2} \cdots} \delta_{i_{c}}^{j_{c}}=0
$$

otherwise it contradicts with irreducibility.
For $\mathrm{SU}(\mathrm{n})$ group, $u=\exp \left(i T_{i} \theta_{i}\right), i=1,2, \cdots, n^{2}-1$, and $T_{i}=\lambda_{i} / 2$. For $\mathrm{SU}(3)$ group, we have generators below:

$$
\left.\begin{array}{ll}
\lambda_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) & \lambda_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
i & 0 & 0
\end{array}\right) & \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
0 & i \\
0
\end{array}\right) \quad \lambda_{8}=\sqrt{\frac{1}{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \quad \lambda_{0}=\sqrt{\frac{2}{3}} \cdot \mathbf{1} 10.2
$$

These Gell-Mann matrices satisfy $\lambda_{a}=\lambda_{a}^{\dagger}, \operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b}, \operatorname{Tr}\left(\lambda_{a}\right)=0$, as well as:

$$
\left[\frac{\lambda_{a}}{2}, \frac{\lambda_{b}}{2}\right]=i f_{a b c} \frac{\lambda_{c}}{2} \quad \text { or } \quad\left[T_{a}, T_{b}\right]=i f_{a b c} T_{c}
$$

where $f_{a b c}$ is the coefficient:

$$
f_{a b c}=\frac{1}{4 i} \operatorname{Tr}\left(\left[\lambda_{a}, \lambda_{b}\right] \lambda_{c}\right)
$$

abc	123	147	156	246	257	345	367	458	678
$f_{a b c}$	1	$1 / 2$	$-1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	$-1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 2$

In addition,

$$
\left\{\lambda_{i}, \lambda_{j}\right\}=\frac{4}{3} \delta_{i j}+2 d_{i j k} \lambda_{k}
$$

abc	118	146	157	228	247	256	338	344
$d_{a b c}$	$1 / \sqrt{3}$	$1 / 2$	$1 / 2$	$1 / \sqrt{3}$	$-1 / 2$	$1 / 2$	$1 / \sqrt{3}$	$1 / 2$
abc	355	366	377	448	558	668	778	888
$d_{a b c}$	$1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2 \sqrt{3}$	$-1 / \sqrt{3}$			

Introduce Casimir operator, also known as a Casimir invariant, which is a distinguished element of the center of the universal enveloping algebra of a Lie algebra.

$$
C_{2}=\sum_{i=1}^{8} T_{i} T_{i}=\frac{1}{2}\left\{I_{+}, I_{-}\right\}+I_{3}^{2}+\frac{1}{2}\left\{U_{+}, U_{-}\right\}+\frac{1}{2}\left\{V_{+}, V_{-}\right\}+T_{8}^{2}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 3 & 0 \\
0 & 0 & 1 / 3
\end{array}\right)
$$

where (B number of baryons, S number of strangeness)

$$
\begin{aligned}
I_{ \pm} & =T_{1} \pm i T_{2}, & I_{3}=T_{3} \\
U_{ \pm} & =T_{6} \pm i T_{7}, & U_{3}=\frac{\sqrt{3}}{2} T_{8}-\frac{1}{2} T_{3}=\frac{3}{4} Y-\frac{1}{2} I_{3} \\
V_{ \pm} & =T_{4} \pm i T_{5}, & V_{3}=\frac{\sqrt{3}}{2} T_{8}+\frac{1}{2} T_{3}=\frac{3}{4} Y+\frac{1}{2} I_{3} \\
Y & =\frac{2}{\sqrt{3}}=\frac{1}{2}(B+S) &
\end{aligned}
$$

therefore $\left[C_{2}, T_{i}\right]=0$; similarly, $\left[C_{3}, T_{i}\right]=0$

$$
C_{3}=2\left(d_{i j k}+i f_{i j k}\right) T_{i} T_{j} T_{k}
$$

Easy to prove

$$
\left[I_{+}, I_{-}\right]=2 I_{3} \quad\left[U_{+}, U_{-}\right]=2 U_{3} \quad\left[V_{+}, V_{-}\right]=2 V_{3}
$$

$\left(I_{+}, I_{-}, I_{3}\right)$ forms an $\mathrm{SU}(2)$ subgroup I; which is orthogonal to $\mathrm{U}(1)$ subgroup Y. $\left(U_{+}, U_{-}, U_{3}\right)$ forms another $\mathrm{SU}(2)$ subgroup I; which is orthogonal to subgroup

$$
Q=I_{3}+\frac{Y}{2}=T_{3}+\frac{1}{\sqrt{3}} T_{8}
$$

I_{3} for isospin, $Q=$ for charge, Y for hypercharge. For u-d-s three-flavor quarks,

$$
I=\{1 / 2,-1 / 2,0\} \quad Q=\{2 / 3,-1 / 3,-1 / 3\} \quad Y=\{1 / 3,1 / 3,-2 / 3\}
$$

In the isospin space, $I_{+}|d\rangle \rightarrow|u\rangle, I_{-}|u\rangle \rightarrow|d\rangle$:

$$
\begin{aligned}
& u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad d=\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right) \quad s=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& I_{+}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad I_{-}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Similarly, $U_{ \pm}$could exchange d and $s, V_{ \pm}$could exchange s and u. Suppose $q^{i}=(u, d, s)$ a 3 -vector, transforming like $q^{i} \rightarrow u_{j}^{i} q^{j}$ under $\mathrm{SU}(3) ; \bar{q}_{i}=(\bar{u}, \bar{d}, \bar{s})$ is also a 3 -vector.

For mesons and baryons, wave functions include

$$
\Psi=\psi_{\text {space }} \cdot \psi_{\text {spin }} \cdot \psi_{\text {flavor }} \cdot \psi_{\text {color }}
$$

2.1 Mesons \& Baryons

Mesons are hadronic subatomic particles composed of an equal number of quarks and antiquarks, denoted by $q \bar{q}=3 \times 3^{*}$.

$$
\begin{array}{|l|}
\hline 3 \\
\hline 2 \\
\hline
\end{array} \otimes \begin{array}{|l|}
\hline 3 \\
\hline 2 \\
\hline 1 \\
\hline
\end{array} \oplus
$$

$$
\underline{3^{*}} \otimes 3=1 \oplus \underline{8}
$$

Suppose

$$
M_{j}^{\prime i}=q^{i} \bar{q}_{j}=\left(\begin{array}{ccc}
u \bar{u} & u \bar{d} & u \bar{s} \\
d \bar{u} & d \bar{d} & d \bar{s} \\
s \bar{u} & s \bar{d} & s \bar{s}
\end{array}\right)
$$

Since $M_{i}^{\prime i} \neq 0$, it's reducible tensor. Define another new traceless tensor
$M_{j}^{i}=q^{i} \bar{q}_{j}-\frac{1}{3} \delta_{j}^{i} q^{k} \bar{q}_{k}=\left(\begin{array}{ccc}\frac{2 u \bar{u}-d \bar{d}-s \bar{s}}{3} & u \bar{d} & u \bar{s} \\ d \bar{u} & \frac{2 d \bar{d}-u \bar{u}-s \bar{s}}{3} & d \bar{s} \\ s \bar{u} & s \bar{d} & \frac{2 s \bar{s}-u \bar{u}-d \bar{d}}{3}\end{array}\right)=\left(\begin{array}{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2 \eta_{8}}{\sqrt{6}}\end{array}\right)$
Then for baryons

$$
\begin{array}{|l|}
\hline 3
\end{array} \otimes \begin{array}{|l|l|l|l|}
\hline 3 \\
\hline 3 & 4 & 5 \\
\hline 3 & 4 \\
\hline 2 & \\
\hline \begin{array}{|l|l|l|}
\hline 3 & 4 \\
\hline 2 & \\
\hline 2 \\
\hline 1 \\
\hline
\end{array} \\
\hline \begin{array}{|l|l|}
\hline 3 \\
\hline
\end{array} \\
\hline
\end{array}
$$

3 QED

$$
\vec{E}=-\vec{\nabla} \varphi-\frac{\partial \vec{A}}{\partial t} \quad \vec{B}=\vec{\nabla} \times \vec{A}
$$

Hamiltonian for QED with interaction:

$$
H=\sqrt{(p-e Q A)^{2}+m^{2}}+Q e \phi
$$

satisfying (q_{i} general coordinates, p_{i} regular momenta)

$$
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}
$$

under non-relativistic limit,

$$
H \approx \frac{(p-e Q A)^{2}}{2 m}
$$

Easy to derive Lorentz force of charged particles in the electromagnetic field

$$
\vec{F}=Q e(\vec{E}+\vec{v} \times \vec{B})
$$

so in order to consider interactions between particles and electromagnetic field, we only need

$$
\begin{aligned}
\vec{p} \rightarrow \vec{p}-Q e \vec{A} & H \rightarrow H-Q e \varphi \\
\vec{p}-Q e \vec{A} \rightarrow-i \vec{\nabla}-Q e \vec{A} & H-Q e \varphi \rightarrow i \frac{\partial}{\partial t}-Q e \varphi
\end{aligned}
$$

by 4 -vec $A^{\mu}=(\varphi, \vec{A})$, we could write

$$
\begin{gathered}
i \partial^{\mu}-Q e A^{\mu}=i\left(\partial^{\mu}+i Q e A^{\mu}\right) \\
\partial_{\mu} \rightarrow \partial_{\mu}+i Q e A_{\mu}
\end{gathered}
$$

Therefore, for Lagrangian of free electrons,

$$
\mathcal{L}_{\text {free }}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

it turns to

$$
\mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}+i Q e A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

which is just the Lagrangian with interaction in QED.

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \quad \Rightarrow \quad \mathcal{L}=\bar{\psi} i \gamma^{\mu}\left(\partial_{\mu}+i Q e A_{\mu}\right) \psi-m \bar{\psi} \psi=\bar{\psi}(i \not D-m) \psi
$$

To keep QED global invariant, we add the transformation for ψ in the local Lagrangian

$$
\psi \rightarrow \psi^{\prime}=\exp (-i Q e \theta) \psi
$$

with arbitrary angle θ.

4 Weak interaction

Beta decays can be classified according to the angular momentum (L value) and total spin (S value) of the emitted radiation. Since total angular momentum must be conserved, including orbital and spin angular momentum, beta decay occurs by a variety of quantum state transitions to various nuclear angular momentum or spin states, namely Fermi transition $(\Delta S=0)$

$$
O^{14} \rightarrow N^{14}+e^{+}+\nu_{e}
$$

and Gamow-Teller transition $(\Delta S=1)$.

$$
H e^{6} \rightarrow L i^{6}+e^{-}+\bar{\nu}_{e}
$$

Fermi posed effective Lagrangian

$$
H=\frac{G}{\sqrt{2}}\left(\bar{\psi}_{p} \gamma_{\mu} \psi_{n}\right)\left(\bar{\psi}_{e} \gamma_{\mu} \psi_{\nu}\right)
$$

where $J_{\mu}=\bar{\psi}_{p} \gamma_{\mu} \psi_{n}$ is hadronic current, $j_{\mu}=\bar{\psi}_{e} \gamma_{\mu} \psi_{\nu}$ is leptonic current. Note that for GamowTeller transition, we need axial-vector current:

$$
J_{\mu}=\bar{\psi}_{p} \gamma_{\mu} \gamma_{5} \psi_{n}
$$

In 1963, N . Cabibbo introduced mixing currents (θ_{C} is Cabibbo angle)

$$
J_{\mu}=J_{\mu}^{\Delta S=0} \cos \theta_{C}+J_{\mu}^{\Delta S=1} \sin \theta_{C}
$$

Weak interaction could be classified according to initial/final states:

- all leptons for initial and final states

$$
\tau^{-} \rightarrow \mu^{-}+\bar{\nu}_{\mu}+\nu_{\tau}
$$

- both lepton and baryon exist

$$
n \rightarrow p+e^{-}+\bar{\nu}_{e}
$$

- all baryons for initial and final states

$$
K^{+} \rightarrow \pi^{+}+\pi^{0}
$$

for quarks, it writes

$$
J_{\mu}=\bar{u} \gamma_{\mu}\left(1-\gamma_{5}\right)\left(d \cos \theta_{C}+s \sin \theta_{C}\right)
$$

4.1 V-A theory

Generally, for current-current coupling:

$$
H=\sum_{i} \frac{G_{i}}{\sqrt{2}} \bar{\psi}_{A} \Gamma_{i} \psi_{B} \bar{\psi}_{C} \Gamma_{i} \psi \bar{D}
$$

with five different Γ_{i}

1. S , scalar, $\Gamma_{i}=\mathbf{1}$;
2. V, vector, $\Gamma_{i}=\gamma_{\mu}$;
3. T, tensor, $\Gamma_{i}=\sigma_{\mu \nu}=\frac{i}{2}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right)$;
4. A, axial-vec, $\Gamma_{i}=\gamma_{\mu} \gamma_{5}$;
5. P, pseudo-scalar, $\Gamma_{i}=\gamma_{5}$;

According to Feynman and Gell-Mann, only V and A currents work for weak interactions. Take $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\bar{\mu}$ as an example, (with $\bar{\psi}_{e}$ denoted by e simply)

$$
H_{W}=\frac{G_{\mu}}{\sqrt{2}} \bar{e} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu_{e} \bar{\nu}_{\mu} \gamma^{\mu}\left(1-\gamma_{5}\right) \mu+\text { h.c. }
$$

and easy to derive decay width (ignore m_{e}^{2} / m_{μ}^{2})

$$
\Gamma_{\mu}=\frac{1}{\tau_{\mu}} \approx \frac{G_{\mu}^{2} m_{\mu}^{5}}{192 \pi^{3}}
$$

u, d, s are eigenstates for mass; u'd's' are eigenstates for weak interaction:

$$
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s}
$$

In 1973, Kobayashi and Maskawa popularized quarks to three generations

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=V_{\mathrm{CKM}}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

CKM matrix, namely Cabibbo-Kobayashi-Maskawa matrix.

